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Abstract 

In this paper, we propose a second-order sliding mode control law of solar sail to hover on displaced orbits above an 

asteroid. To overcome the difficulties of solar sail control, firstly, dynamics in cylindrical coordinates are used and 

only the hovering radii and height are controlled, neglecting the polar angle; secondly, the angular velocity of two 

attitude angles is taken as the control input instead of the angles themselves; lastly, an adaptive estimation law is 

applied to increase the robustness to gravity uncertainty. The case of hovering on displaced orbits above 433 Eros is 

simulated. The effect of different hovering radius, height and sunlight incidence direction are studied. In addition, the 

robustness of the control law is tested against unknown gravity disturbances and imprecise sail force model. This work 

successfully demonstrates that it is feasible to achieve an asteroid-hovering mission using an underactuated solar sail 

with only two controllable attitude angles. 
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1. Introduction 

Asteroids, a type of small bodies, are widely-

distributed living fossils in the solar system. As the 

space exploration deepens, these inconspicuous space 

rocks have attracted more attention of researchers and 

space agencies around the world. Asteroid exploration 

not only helps to reveal the origin of solar system, but it 

also assists significantly with space resource 

exploitation and planetary defence. There have been 

many representative examples of asteroid missions. In 

2001, NEAR-Shoemaker probe to 433 Eros had become 

the first one to orbit and land on an asteroid [1]. The 

Hayabusa mission to 25143 Itokawa had achieved 

sample return of an asteroid for the first time in 2010 [2]. 

The follow-up Hayabusa 2 mission to 162173 Ryugu 

made multiple surface interactions with MASCOT 

landers, as well as performing a sample return [2]. These 

missions have brought many successes, not only in 

better knowing of asteroid physical properties, but also 

in boosting technologies in deep space exploration. 

Since transfers to asteroids usually require high delta-

v budgets, solar sailing can be an ideal option as it is 

capable of providing a theoretically-unlimited delta-v. 

Extensive research has investigated the use of solar sails 

for asteroid rendezvous missions [3-5], while little effort 
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has been made on the operations of a solar sail in close 

proximity of an asteroid. In order to maximise the 

scientific return of the mission, asteroid flying-by 

reconnaissance is not enough and close-proximity 

operations will be essential, including hovering. 

Hovering is a practical option of mapping an asteroid: 

the spacecraft flies on the displaced orbit above a certain 

region of the asteroid or keep stationary at a certain 

location, which therefore takes advantage in high-

resolution imaging [6], landing [7], lander deployment 

[8] and sampling [2]. However, hovering above an 

asteroid is energy-consuming as it seeks no benefit from 

natural motion in most cases, making it only suitable for 

asteroids of small dimension [9]. Regarding this issue, 

solar sailing may offer a possible solution to hovering 

above large asteroids because of the continuous 

propellant-free acceleration.  

New concepts of spacecraft in asteroid missions 

bring new challenges in control. Firstly, differently from 

spacecraft with three-axis thrust, a conventional sail-

craft only has two control variables, namely attitude 

angles, for orbit control, resulting in an acceleration 

vector that is constrained in both direction and 

magnitude. Thus, it is challenging or impossible to track 

any arbitrary orbit in three dimensions; this is indeed 

typical of an underactuated system. Secondly, the input 

sail attitude angles affect its dynamics via trigonometric 
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terms; in other words, the control is not linear and non-

affine. An additional complexity is that the gravity field 

of an asteroid is highly irregular and cannot be precisely 

known prior to a mission, adding uncertainty and 

disturbances to the control problem. 

Yet some research provides insights in the control of 

solar sail in proximity of asteroids. Biggs and McInnes 

[10] proposed the Time-Delayed Feedback Control 

(TDFC) as a method of bounding the orbit of a 

spacecraft around a central body with large ellipticity. 

Rather than depending on some reference trajectory, this 

method uses the state known one period previous to the 

current state as the reference. Farrés et al.  [11-13] have 

studied a series of work on the dynamics of solar sail 

near an asteroid. These works brilliantly inherited the 

complete theory of linear control and orbit dynamics in 

CR3BP, but the linearisation involved cannot guarantee 

global stability, which means stable controlled orbits 

can be designed only near the equilibrium points. Zeng 

[14] considered the solar sail with controllable 

reflectivity and globally searched the feasible hovering 

regions above an asteroid with sunlight incident 

direction taken into account. The reflectivity change is 

the third control that complements the attitude 

manoeuvres to solve the underactuated problem, but it 

will significantly increase the system complexity and 

cost. Moore and Ceriotti [15] proposed the Genetic 

Algorithm and Control Transition Matrix (GA & CTM) 

method and found its application in eliminating the non-

spherical gravity perturbation of an asteroid on solar sail 

orbits. This method uses an optimisation approach to 

obtain the control so that non-affine and underactuated 

problems are avoided. However, due to the black-box 

nature of GA, the desired orbit can only be selected 

within unforeseeable candidates but cannot be 

predefined arbitrarily, especially in terms of non-

Keplerian orbits above asteroids. In addition, the sliding 

mode control (SMC), a control strategy robust to 

disturbances, attracts as much attention for its wide 

application in spacecraft orbit control. There has been 

research about asteroid landing [7] and orbiting [16, 17] 

missions with SMC; in this paper, its application in the 

orbit control of solar sail will be investigated. 

In this paper, an adaptive terminal sliding mode 

control is proposed for the hovering control close to 

asteroid Eros. A displaced (non-Keplerian) circular 

orbit is selected as reference, and by converting the 

dynamics from Cartesian to cylindrical coordinates, the 

desired displaced orbit radius and hovering height are 

tracked regardless of polar angle, which transforms the 

underactuated system into a fully-actuated one. By 

differentiating the dynamics, the first-order derivatives 

of the sail attitude angles appear in linear form and are 

therefore chosen as the control input so that the non-

affine issue can be solved. Moreover, an estimation law 

is designed to update the upper bound of disturbances, 

making the control robust to the complex gravity field 

of an asteroid. 

2. Dynamics 

2.1. Frames of Reference 

A sketch of the reference frames is shown in Fig. 1. 

The first frame is the principal axis frame fixed with the 

asteroid referred to as 𝑂𝑥𝑦𝑧 (denoted as frame 𝑎). It is 

centred at the barycentre of the asteroid and it rotates 

about 𝑧 axis defined by the constant self-spin rate of the 

asteroid, 𝝎 = 𝜔𝒛̂  (the hat above a vector is used 

throughout this paper to indicate its unit vector) where 

𝜔 is the modulus of angular velocity. 𝑥 axis lies in the 

equatorial plane normal to 𝑧 axis and 𝑦 axis completes 

the triad. The inertially-fixed frame 𝑂𝑋𝑌𝑍 (which is not 

shown in Fig. 1 and denoted as frame 𝐼) coincides with 

𝑂𝑥𝑦𝑧 at the initial time. If only a short time of flight 

around the asteroid is considered, it is reasonable to take 

this frame as fixed with respect to the sun direction, 

because the asteroid spin period (in the order of hours) 

is negligible with respect to its orbital period (in the 

order of years). Another important frame is the light 

incidence frame 𝑂𝑒𝑥𝑒𝑦𝑒𝑧  (denoted as frame 𝐸 ). 𝑒𝑧  is 

aligned with the solar incident direction, 𝑒𝑦  coincides 

with 𝑌  axis and 𝑒𝑥  completes the triad. The relative 

position between the Sun and the asteroid can be 

described by the solar incidence angle 𝜑 ∈ [−𝜋/2, 𝜋/2], 
defined as the angle between 𝑒𝑧 axis and 𝑍 axis. The last 

frame is the hovering orbit frame 𝑜𝑥ℎ𝑦ℎ𝑧ℎ (denoted as 

frame ℎ). The 𝑜𝑥ℎ𝑦ℎ  plane lies in the hovering plane 

which is perpendicular to the 𝑧 axis and 𝑥ℎ, 𝑦ℎ, 𝑧ℎ axes 

follow the directions of outward radial, forward 

tangential and upward respectively.  

 

 
Fig. 1. Diagram of asteroid-fixed frame, light incidence frame, 

hovering orbit frame and solar sail attitude angles. 

 

The coordinate transformations among the different 

frames are shown below: 

𝐸
𝐂𝑦(𝜑)
→   𝐼

𝐂𝑧(𝜔𝑡)
→    𝑎

𝐂𝑧(𝜃)
→   ℎ (1) 
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where the rotation matrices are: 

𝐂𝐸
𝐼 = [

cos𝜑 0 − sin𝜑
0 1 0

sin𝜑 0 cos𝜑
] (2) 

𝐂𝐼
ℎ = [

cos(𝜃 + 𝜔𝑡) sin(𝜃 + 𝜔𝑡) 0

−sin(𝜃 + 𝜔𝑡) cos(𝜃 + 𝜔𝑡) 0
0 0 1

] (3) 

𝐂𝑎
ℎ = [

cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0
0 0 1

] (4) 

2.2. Model of Asteroid Gravity 

Polyhedron method is one of the methods to model 

the gravitational field of an asteroid while reflecting the 

perturbation induced by its irregular shape. The gravity 

potential in asteroid-fixed frame can be written as: 

𝑈 = −𝐺𝜌 ∑ 𝐄e𝒓𝑒𝐿𝑒
𝑒∈𝑒𝑑𝑔𝑒𝑠

+ 𝐺𝜌 ∑ 𝐅f𝒓𝑓𝜔𝑓
𝑓∈𝑓𝑎𝑐𝑒𝑠

(5) 

where 𝐺  is the gravitational constant and 𝜌  is the 

constant density of the asteroid. As can be seen, this 

expression is made up of two different contributions: the 

first is associated with the edges of each face and the 

second with the faces of each tetrahedron which form 

the surface of the body. The term 𝒓𝑒 represents a vector 

from a field point to any point on the edge 𝑒, while the 

term 𝒓𝑓  represents a vector from a field point to any 

point on the face 𝑓. 𝐄e and 𝐅f are two tensors: the first 

takes into account the geometry of the edges and the 

second considers the geometry and the orientation of the 

faces. Finally, 𝐿𝑒 and 𝜔𝑓 are two scalars: the first is the 

potential of a 1D straight wire and 𝜔𝑓 is the signed solid 

angle subtended by the face 𝑓 . Further details about 

calculation can be referred to the work of Werner and 

Scheeres [18]. 

2.3. Model of Solar Sail 

Consider an ideal solar sail, the solar radiation 

pressure (SRP) acceleration can be modelled as [19]:  

𝒂𝑆𝑅𝑃 = 𝑎0 cos
2 𝛼 𝒏̂ (6) 

where 𝑎0  is the constant part in SRP acceleration 

determined by the lightness number 𝛽 , the solar 

gravitational constant 𝜇𝑠 and heliocentric distance 𝑅. 

𝑎0 =
𝛽𝜇𝑠
𝑅2

(7) 

𝒏̂ is the unit vector of sail normal in light incidence 

frame, expressed as: 

𝒏̂ = [sin 𝛼 cos 𝛿 sin 𝛼 sin 𝛿 cos 𝛼]𝑇 (8) 

where 𝛼 ∈ [0, 𝜋/2]  is the cone angle, defined as the 

angle between 𝒏̂ and 𝑒𝑧  axis, and 𝛿 is the clock angle, 

defined as the angle between 𝑒𝑥 axis and the projection 

of 𝒏̂ on  𝑂𝑒𝑥𝑒𝑦 plane (see Fig. 1). 

2.4. Dynamics in Cylindrical Coordinates 

Similar to the work on SRP geocentric displaced orbit 

in Ref. [20, 21], dynamics in cylindrical coordinates is 

adopted in order to facilitate the design. The dynamics 

of a solar sail at position 𝒓 = [𝑥, 𝑦, 𝑧]𝑇 in asteroid-fixed 

frame 𝑎 is given by: 

𝒓̈ + 2𝝎 × 𝒓̇ + 𝝎 × (𝝎 × 𝒓) = 𝛁𝑈 + 𝒇𝑆𝑅𝑃 (9) 

where 𝛁𝑈 is the gradient of gravity potential and 𝒇𝑆𝑅𝑃 

is the SRP acceleration in asteroid-fixed frame. 

By substituting 𝑥 = 𝜌 cos 𝜃  and 𝑦 = 𝜌 sin 𝜃 , the 

dynamics in Cartesian coordinates can be converted into 

the cylindrical coordinates (𝜌, 𝜃, 𝑧) shown below: 

{

𝜌̈ = 𝜌(𝜔 + 𝜃̇)
2
+ 𝑔𝜌 + 𝑓𝜌

𝜌𝜃̈ = −2𝜌̇(𝜔 + 𝜃̇) + 𝑔𝜃 + 𝑓𝜃
𝑧̈ = 𝑔𝑧 + 𝑓𝑧

(10) 

where  

𝒈 = [𝑔𝜌, 𝑔𝜃 , 𝑔𝑧]
𝑇
= 𝐂𝑎

ℎ𝛁𝑈 (11) 

𝒇 = [𝑓𝜌, 𝑓𝜃 , 𝑓𝑧]
𝑇
= 𝐂𝐼

ℎ𝐂𝐸
𝐼 𝒂𝑆𝑅𝑃 (12) 

In the next chapter, 𝒇, the SRP acceleration in hovering 

orbit frame ℎ, is to be controlled so that the solar sail can 

hover on the displaced orbit with its plane normal to 𝑧 
axis.  

3. Control 

3.1. Sliding Mode Control 

 Because the manoeuvres required to achieve a 

hovering state are executed in a dynamical environment 

that is generally uncertain, an effective implementation 

of such requires employing control algorithms that are 

robust against unmodeled perturbations. To this regard, 

sliding mode control (SMC) is considered to be one of 

the most effective techniques for controlling dynamical 

systems with uncertainties [16]. The idea behind SMC 

is to design a controller capable of maintaining a 

properly chosen constraint, i.e. a sliding surface, by 

means of high-frequency control switching.  Once the 

system dynamics is on the sliding surface, it is 

constrained to remain there, resulting in robust and 

adaptive control, although it often comes with actuator 

chattering due to the frequent switch of discontinuous 

control signal.  
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3.2. Design of Sliding Surface 

Define vectors for state 𝝌 = [𝜌, 𝜃, 𝑧]𝑇  and control 

𝒖 = [𝛼, 𝛿]𝑇. Now the control objective is to force the 

reduced state 𝝌𝑟 = [𝜌, 𝑧]
𝑇  to asymptotically track the 

desired state 𝝌𝑑 = [𝜌𝑑 , 𝑧𝑑]
𝑇 , regardless of the polar 

angle 𝜃, by only varying the attitude angles 𝛼 and 𝛿.  

Define tracking error vector as 𝒆 = 𝝌𝑟 − 𝝌𝒅 , the 

sliding surface can be chosen as: 

𝒔 = 𝒆̇ + 𝐤𝒆 (13) 

where 𝐤  is a diagonal positive-definite matrix to be 

designed. 

Then, inspired by the terminal sliding surface used in 

Ref. [22], a similar non-singular terminal sliding surface 

is designed as  

𝝈 = 𝒔 + 𝑘0𝒔̇
𝑝
𝑞 (14) 

where 𝑘0 is a positive constant, 𝑝 and 𝑞 are positive odd 

numbers, holding 1 < 𝑝/𝑞 < 2. The application of this 

terminal sliding surface guarantees the convergence of 

tracking error within finite time. 

3.3. Design of Controller 

For the non-affine control system, it is more 

convenient to choose 𝒖̇ as the control input instead of 𝒖. 

𝒖̇  will appear in linear form if Eq. (10)  is further 

differentiated to 𝝌⃛, shown as: 

𝝌⃛ = 𝒉(𝝌𝑟 , 𝝌̇𝑟) + 𝐂𝐼
𝑜̇𝐂𝐸
𝐼 𝒂𝑆𝑅𝑃 + 𝐂𝐼

𝑜𝐂𝐸
𝐼 𝐁(𝒖)𝒖̇ (15) 

There are two notable points: firstly, the result of 

𝐂𝐼
𝑜𝐂𝐸
𝐼 𝐁(𝒖)𝒖̇  neglects the second row since 𝜃  is not 

concerned; Secondly, 𝒉 can be further split as 

𝒉 = 𝒉𝟎 + 𝒅 (16) 

where 𝒉𝟎 is the known part of the derivative of point-

mass gravity −𝜇𝒓/𝑟3 , and 𝒅  is the unknown part of 

non-spherical gravity disturbances. Such split takes 

account the normal case that the non-spherical 

perturbation of an asteroid is not precisely known until 

in-situ visit. Recall that in the module of dynamics, a 

polyhedron gravity field model is used for precise 

propagation. In addition, assumption is made that 𝒅 is 

bounded, holding ‖𝒅‖ ≤ 𝑫. 

After obtaining 𝝌⃛, Eq. (13) is differentiated twice so 

that, considering Eq. (15) , the dynamics of 𝒔  is 

obtained as: 

𝒔̈ = 𝒉 + 𝐂𝐼
𝑜̇𝐂𝐸
𝐼 𝒂𝑆𝑅𝑃 + 𝐂𝐼

𝑜𝐂𝐸
𝐼 𝐁(𝒖)𝒖̇ − 𝝌𝒅⃛ + 𝐤𝒆̈ (17) 

Next, Eq. (14) is differentiated once so that 𝒔̈ appears: 

𝝈̇ = 𝑘0
𝑝

𝑞
diag (𝒔̇

𝑝
𝑞
−1
) (
𝑞

𝑘𝑝
𝒔̇
2−
𝑝
𝑞 + 𝒔̈) (18) 

If the reaching law to terminal sliding surface is 

chosen as: 

𝝈̇ = diag (𝒔̇
𝑝
𝑞
−1
) (−𝜀1𝝈 − 𝜀2sign(𝝈)) (19) 

once the dynamics flow to 𝝈 = 𝟎, 𝒔 will converge to 𝟎 

rapidly as well as 𝒆 , where 𝜀1  and 𝜀2  are positive 

parameters to be designed. 

Finally, substituting Eq. (17)  into Eq. (18)  and 

combining Eq. (18) and (19), the control law can be 

obtained as: 

𝒖̇ = (𝐂𝐼
𝑜𝐂𝐸
𝐼 𝐁)−1 [

𝝌𝑑⃛ − 𝒉 − 𝐂𝐼
𝑜̇𝐂𝐸
𝐼 𝒂𝑆𝑅𝑃

−𝐤𝒆̈ −
𝑞

𝑘𝑝
𝒔̇
2−
𝑝
𝑞 − 𝜀1𝝈 − 𝜀2sign(𝝈)

] (20) 

3.4. Design of Adaptive Estimation in Controller 

The boundary of gravity disturbances 𝒅 is separately 

updated by an adaptive estimation law, designed as: 

𝑫̇̂ = 𝛾
𝑘0𝑝

𝑞
diag (𝒔̇

𝑝
𝑞
−1
) |𝝈| (21) 

where 𝛾, the updating rate, is a positive number to be 

designed. 

With the adaptive law, the control law of 𝒖̇  is 

finalised as: 

𝒖̇ = (𝐂𝐼
𝑜𝐂𝐸
𝐼 𝐁)−1 [

𝝌𝑑⃛ − 𝒉0 − 𝑫̂ − 𝐂𝐼
𝑜̇𝐂𝐸
𝐼 𝒂𝑆𝑅𝑃

−𝐤𝒆̈ −
𝑞

𝑘𝑝
𝒔̇
2−
𝑝
𝑞 − 𝜀1𝝈 − 𝜀2sign(𝝈)

] (22) 

4. Results 

4.1. Simulation of Hovering 

In this section, the case of hovering on a displaced 

orbit above Eros is simulated. The physical parameters 

for simulation are listed in Table 1. The pre-defined 

parameters in the controller are listed in Table 2.  

Choosing the desired hovering orbit as [𝜌𝑑 , 𝑧𝑑]
𝑇 =

[18,40] km  and the initial conditions as [𝜌, 𝜃, 𝑧]𝑇 =
[18.1 km,−𝜋/2, 39.9  km] (not on the reference orbit),  

[𝜌̇, 𝜃̇, 𝑧̇]
𝑇
= [−1 m/s, −3.3117 × 10−4  rad/s, 1 m/s ] ,  

the trajectory of solar sail is shown in Fig. 2 where the 

solar sail is driven to the desired trajectory clockwise. 

The control history is shown in Fig. 3. Detailed 

examination to the response curve shows that the cone 

angle 𝛼  fluctuated above and below 53 deg with 

chattering, which is a net result of combating the non-

spherical disturbances of the asteroid and inherent SMC 

characteristic.  Fig. 4 is the response to tracking errors, 

showing that they converge to less than 1 m within 7.8 

hours. Despite the polar angle is not controlled, the 

general pattern of its variation needs to be understood. 

Fig. 5 shows that time derivative of the polar angle 𝜃̇ 
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(presented in units of asteroid spin rate 𝜔) behaves in 

near-sinusoidal way. Looking back into Eq. (10) may 

reveal the reason. At steady state,  𝜌̇ = 0  and 𝑔𝜃  is 

lower in magnitude than 𝑓𝜃, therefore 𝑓𝜃 dominates the 

general variation of 𝜃̈ . Furthermore, 𝑓𝜃  contains the 

trigonometric term of 𝒖 = [𝛼, 𝛿]𝑇 with near-constant 𝛼 

at steady state, and thus 𝑓𝜃 changes with 𝛿 sinusoidally, 

leading to a near-sinusoidal 𝜃̇ as a result.  

 
Table 1. Physical parameters for simulation 

 Value 

Eros Gravitational 

Constant 𝜇 
4.4602×104 km3/s2 

Eros Spin Rate 𝜔 3.3117×10-4 rad/s 

Eros Heliocentric 

Distance 𝑅 
1.6917×106 km 

Solar Incidence 

Angle 𝜑 

0 deg 

Sail Lightness 

Number 𝛽 

0.2 

 
Table 2. Parameters in controller  

 Value 

𝐤 diag(1,1) (s-1) 

𝑘0 1×106 

 (km1-p/q / s1-2p/q) 

p 7 

q 5 

𝜀1 1×10-9 (s-1) 

𝜀2 1×10-9 (s-1) 

𝛾 1 

 

 
Fig. 2. Controlled trajectory of solar sail. 

 

 
Fig. 3. Time history of control attitude angles. 

 

 
Fig. 4. Response to tracking errors. 

 

 
Fig. 5. Polar Angle 𝜃 and its time derivative 𝜃̇. 

4.2. Robustness 

4.2.1. Sail Degradation 

Optical degradation of a solar sail is a practical 

concern because it decreases both the magnitude of SRP 
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and sail control authority [23]. When degradation 

happens, the lightness number 𝛽  decreases, which is 

equivalent to superpose an equi-magnitude but reverse 

disturbance onto the controlled SRP acceleration. A 

scenario is assumed that 𝛽 is degraded from 0.2 to 0.15 

exponentially with 99% attenuation at 15 hours (much 

faster than real degradation would be). It can be fitted as: 

𝛽(𝑡) = 0.05𝑒−𝑡/13500 + 0.15 (23) 

With the nominal value of 𝛽  staying at 0.2, the 

simulation shows a successful controlled trajectory the 

same as that in Fig. 2, while the response of cone angle 

𝛼 is different. In Fig. 6, the control of cone angle 𝛼 in 

ideal (Section 4.1) and optical degradation (Section 4.2) 

cases are compared. When optical degradation occurs, 

the cone angle automatically decreases to compensate 

the reduction of SRP magnitude and the orbit control is 

still maintained. This result demonstrates the robustness 

of the control law to internal disturbances of sail 

modelling error.  

 

 
Fig. 6. Control of cone angle in ideal (blue) and optical 

degradation (red) cases. 

 

4.2.2. Gravity Field 

Recalling that the simple point-mass gravity is used 

in the controller design, the robustness to gravity 

disturbances can be further tested. Now it is assumed 

that, in the propagation of the dynamics, the real mass 

of Eros is two times of the nominal value used in the 

controller. Fig. 7 indicates that the scenario is identified 

by the control law and cone angle is adjusted down to 

about 41 deg while it remains around 53 deg with 

nominal Eros mass in dynamics. The fact that hovering 

control still works demonstrates that the control law is 

robust to the unknown external gravity disturbances. It 

is also worth noting that the control is still robust even 

without the adaptive estimation law of Eq. (21). Further 

enlarging the real mass of Eros shows that the 

robustness of control is increased by introducing the 

estimation on 𝑫 (see Eq. (21)): the control without the 

adaptive estimation breaks down until the real mass 

increases to 3 times of the nominal value approximately, 

while with the adaptive estimation it fails with the real 

mass up to 3.4 times of the nominal value.  

 

 
Fig. 7. Control of cone angle in real dynamics with nominal 

asteroid mass (blue) and double asteroid mass (red). 

 

4.3. Effect of hovering radius and height 

After the injection manoeuvre, the values of cone 

angle at steady state are relevant to the polar radius 𝜌𝑑 

and height 𝑧𝑑 of the displaced hovering orbit. The cone 

angles with  𝜌𝑑 = 18 km, 𝑧𝑑 = 30, 40, 50 km are shown 

in Fig. 8, while those with 𝑧𝑑 = 40 km, 𝜌𝑑 = 10, 18, 24 

km are shown in Fig. 9, which demonstrate that a solar 

sail can achieve hovering in different locations above 

the asteroid to implement tasks with different 

requirements without changing any optical properties or 

lightness number. It can be found that smaller hovering 

height and radii require smaller cone angles because 

larger SRP component is needed to counterbalance the 

gravity in 𝑧-axis direction as the solar sail gets closer to 

the barycentre of the asteroid, as well as to supply larger 

centripetal force in smaller circular orbits. Moreover, 

cone angles experience a more intense oscillation as a 

result of disturbance rejection in the cases of smaller 

hovering height and larger hovering radii. This is 

because the effect of perturbation of irregular shape 

becomes more obvious as the solar sail gets closer to the 

asteroid in 𝑧 -axis direction. As the hovering radius 

becomes smaller, the solar sail undergoes less variation 

of gravity perturbation in 𝑂𝑥𝑦 plane. An extreme case 

will be the station-keeping above the north pole of the 

asteroid where planar gravity perturbation keeps 

constant.  
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Fig. 8. Cone angle at steady state with  𝜌𝑑 = 18 km. 

 

 
Fig. 9. Cone angle at steady state with 𝑧𝑑 = 40 km. 

4.4. Effect of Sunlight Incidence Direction 

The sunlight incidence angle 𝜑  is affected by two 

elements: heliocentric orbital inclination and obliquity 

of the ecliptic. Within one orbital period of Eros, 𝜑 can 

vary in a large range. For example, when NEAR 

Shoemaker was orbiting Eros in 26 June 2000, its 

rotation axis was perpendicular to the Sun-Eros line 

(𝜑 = 90 deg), and 7 months later, it became aligned 

with Sun-Eros line (𝜑 = 0 deg)  [24]. Simulations with 

𝜑 = 0, 15, 30, 60, 90 deg are made to study the influence 

of sunlight incident direction on the hovering control. 

The results of trajectories and control are presented in 

Fig. 10. For the cases of 𝜑 = 0, 15 deg, the orbit keeping 

succeeds; when 𝜑  grows larger than 30 deg, the 

displaced orbit fails to be maintained; when 𝜑 = 90 deg, 

the control breaks down in manoeuvre stage. It is 

obvious that the control is only effective for a set of 

small values of 𝜑. An explicit reason is that a solar sail 

can never produce sunward SRP force which is always 

required by the controller as long as 𝜑 is not zero. To 

this concern, an auxiliary SEP propulsion system may 

be installed on the sail to complement the missing  

component towards the Sun, or the solar sail should be 

driven into other anchor locations during infeasible 

sunlight incidence period, such as heliocentric solar 

synchronous orbit. 

  

 

 

 

 

 
Fig. 10. Trajectories and control of hovering control with 

sunlight incidence angle (a) 𝜑 = 0 deg, (b) 𝜑 = 15 deg, (c) 𝜑 

= 30 deg, (d) 𝜑 = 60 deg, (e) 𝜑 = 90 deg. 

5. Conclusions 

In this paper, a hovering orbit controller based on 

second-order sliding mode theory is designed for solar 

sail spacecraft on asteroid displaced orbit. Not only does 

it provide an insight into tackling the problems of 

underactuated and non-affine control, but also behaves 

robustly enough to the external unmodelled gravity 

disturbances and internal imprecise modelling of forces 

exerted on the sail. Simulation results indicate that 

smaller hovering radii and height lead to smaller cone 
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angle. In addition, smaller hovering height and larger 

radii induce more obvious oscillations in the cone angle. 

Furthermore, because of the natural shortcoming of 

solar sailing that it cannot generate sunward force, the 

controller only works for small sunlight incidence 

angles. However, a quantitative analysis is lacking in the 

result analysis. Future work can search feasible ranges 

of hovering height, radii and sunlight incident direction, 

as well as improving the quality of the control. The 

direct observer on gravity disturbance 𝒅  will be 

designed instead of its boundary 𝑫 as follow-up work. 
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